【問題】
下の図で、曲線は関数\(y=\frac{1}{2}x^2 \)のグラフです。曲線上に\(x \)座標が\(-1\)、\(3\)である2点A、Bをとります。
(1)直線ABの式を求めなさい。
(2)\(y\)軸を対称の軸として点Bと線対称である点Cをとり、四角形CAOBをつくります。この四角形CAOBの面積を求めなさい。
(3)曲線上を、\(x\)座標が\(x<-1 \)の範囲で動く点Pを考えます。△PABと△POBの面積が等しくなるとき、点Pの座標を求めなさい。
絶対合格!関数攻略セミナー
もっと関数の演習をしたい方はこちらの教材をご利用ください!
絶対合格!
関数完全攻略セミナー
塾は不要!家にいながら本格的な学びができる
基礎が身につく6つのステップ
入試に出る14パターン
動画を見るだけで解けるようになる!
《講義内容》
「基礎が身につく6つのステップ」
- 関数の式のつくり方 (29分57秒)
- グラフのかき方 (10分45秒)
- 変域の求め方 (16分07秒)
- 変化の割合 (12分39秒)
- 座標の求め方 (23分18秒)
- 長さの求め方 (12分25秒)
「基礎定着演習」
- 6つのステップを実践で活かす演習(18分52秒)
- 基礎定着問題集 97問
【応用力を高める発展演習】
グラフの面積を求める
- 放物線と直線の面積(7分57秒)
- 全体から取り除く面積(5分23秒)
- 面積の比を求める(5分43秒)
三角形の面積を2等分
- 2等分はどこを通る?(5分55秒)
- 面積を2等分する直線(6分27秒)
相似を利用、座標⇔比の考え方
- 座標⇔比の基本的な考え方(7分23秒)
- AC:AB=3:4の座標は?(5分14秒)
座標を文字で置いて考える
- 文字座標で面積を表す(9分58秒)
- 台形の面積を2等分(7分00秒)
- 双曲線と放物線の組み合わせ(7分23秒)
- 面積が等しくなるのは?(6分09秒)
- y座標から文字で表す方法(11分24秒)
- 四角形の面積はこうやって考える(5分43秒)
- 傾きをヒントに座標を求める(6分11秒)
放物線と四角形
- 正方形になるのは?(8分39秒)
- 四角形の面積の2/5倍(7分09秒)
最短距離
- 長さの和が最短になる考え方(4分56秒)
- 放物線と最短距離(2分22秒)
- 双曲線と最短距離(2分28秒)
等積変形
- 等積変形の考え方、基本演習(6分27秒)
- 四角形⇒三角形への等積変形(6分29秒)
- x軸上に点をとって等積変形(3分59秒)
- 等積変形って気づける?(6分44秒)
平行四辺形
- 平行四辺形になる座標、面積の2等分(6分55秒)
- 面積の2等分は対角線が大事!(4分39秒)
- 平行四辺形の面積はこうやるべし!(9分52秒)
- 変化量から座標を求める(8分41秒)
動点
- 動点の基礎講義~一次関数~(15分50秒)
- 動点の基礎講義~2次関数~(16分02秒)
- 動点と三角形、どんなグラフ?(12分12秒)
- 二等辺三角形になるのは何秒後?(10分39秒)
- 動点の長さを求めるワザ(10分45秒)
- 図形が動いていく問題(8分45秒)
グラフの利用(速さ)
- 追いつくパターンの基礎講義(15分21秒)
- 途中で速さが変わる(8分16秒)
- バスの往復、すれ違うのは?(11分12秒)
- 往復する兄と弟、それぞれ速さは?(9分45秒)
- 放物線と直線の組み合わせ(11分54秒)
グラフの利用(水そう)
- 2つの水そうの変化(8分40秒)
- 水そうのおもりと体積(6分38秒)
- 排水と給水、1分間の変化は?(6分40秒)
グラフの利用(その他)
- ろうそくが燃えつきるのは?(9分05秒)
- 電気料金、式で表せる?(7分49秒)
格子点
- 格子点の数え方は?(6分53秒)
- 格子点の実践編(7分56秒)
- 格子点と線分の関係(4分58秒)
回転体の体積
- 回転体は楽して式を作れ!(6分40秒)
- 円錐が空洞になってるパターン(3分39秒)
- 辺が斜めになっているなら?(5分05秒)
- 直角三角形になるには?(7分16秒)
- 激ムズ回転体の考え方とは(5分14秒)